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A compact physiologically based mean-field formulation of brain dynamics is proposed to model observed
brain activity and electroencephalographic (EEG) signals. In contrast to existing formulations, which are more
detailed and complicated, our model is described by a single second-order delay differential equation that
encapsulates salient aspects of the physiology. The model captures essential features of activity mediated by
fast corticocortical connections and delayed feedbacks via extracortical pathways and external stimuli. In the
linear regime, these features can be simply expressed by three coefficients derived from the properties of these
physiological pathways and explicit nonlinear approximations are also derived. This compact model success-
fully reproduces the main features of experimental EEG’s and the predictions of previous models, including
resonance peaks in EEG spectra and nonlinear dynamics. As an illustration, key features of the dynamics of
epileptic seizures are shown to be reproduced by the model. Due to its compact form, the model will facilitate
insight into nonlinear brain dynamics via standard nonlinear techniques and will guide analysis and investiga-
tion of more complex models. It is thus a useful tool for analyzing complex brain activity, especially when it

exhibits low-dimensional dynamics.
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I. INTRODUCTION

The complex dynamics of brain function has been an ac-
tive topic of interest for decades [1-3]. In particular, electro-
encephalograms (EEG’s) resulting from cortical electrical ac-
tivity have been widely used as a tool in neuroscience and
medicine. As an approach to integrating various properties of
EEG’s, mean-field continuum models of brain dynamics
have been developed since the 1970s [4-12]. Within this
class of models, various authors have incorporated realistic
anatomical and physiological features such as excitatory and
inhibitory neural populations, nonlinear neural threshold fir-
ing responses, dendritic, cell-body and axonal dynamics, and
corticothalamic feedback (detailed overviews are available in
Refs. [13-16] and references therein). Recent work in this
area has reported a number of quantitatively verified predic-
tions of EEG’s, such as spectral peaks corresponding to dif-
ferent brain states [17,18], evoked response potentials
(ERP’s) [19], generalized epileptic seizures [17,20], and
measures of coherence [21].

Despite their many successes, previous continuum models
are difficult to explore systematically because they involve
relatively large numbers of quite complicated equations with
many parameters. For example, the model in Ref. [22] has a
set of four second-order delay differential equations with
10-15 physiologically constrained parameters, depending on
the variant. Although some properties of EEG’s, such as
spectral peaks, can be well understood by linear instability
analysis of the model, nonlinear behaviors are hard to ex-
plore analytically. There are some specific cases where cer-
tain nonlinear properties, such as limit cycles and chaotic
attractors, are observed. For example, Le Van Quyen et al.
[23] demonstrated that saddle-node behavior is embedded in
low-dimensional chaotic brain dynamics by analyzing EEG’s
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during epileptic seizures. In addition, the onsets of instability
of a brain at resonance frequencies can be parametrized in a
reduced space [17]. Stable limit cycles emerge when the
brain passes the instability boundaries, as was recently veri-
fied by a mean-field approach [17,20]. These results show
that the brain exhibits low-dimensional dynamics under
some conditions and such dynamics can thus potentially be
described by a simpler model with fewer equations and pa-
rameters than has hitherto been achieved.

Motivated by the above points, our first aim is to obtain a
simple model for cortical dynamics by adapting and approxi-
mating the aforementioned continuum model [12,15,22]. The
compact model describes the brain using a single second-
order delay differential equation which has only one explicit
variable: the corticocortical excitatory activity. The second
aim of the paper is to verify that the compact model retains
the key dynamical features of the more general one. In doing
this, we show that the model can be linearized near steady
states, keeping the essential features such as corticocortical
propagation and delayed feedbacks via simplified extracorti-
cal pathways and external stimuli; in addition, a cubic non-
linear approximation is derived near fixed points. These fea-
tures can then be simply expressed by three coefficients
derived from the properties of these physiological pathways.
When driven by white noise, representing external stimuli,
we verify that our model reproduces and unifies many linear
and nonlinear properties of EEG’s, such as spectral peaks
and epileptic seizure dynamics, in a physiologically plausible
parameter region, thereby combining many successes of re-
cent modeling with greater simplicity and insight.

The relevant aspects of the previous corticothalamic
model are briefly outlined in Sec. II. A compact model is
derived based on the relevant physiology (the central out-
come of the paper) and related to the previous corticotha-
lamic model in Sec. IIT A. We then verify that the compact
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model has similar dynamical properties to more complex
ones. Section III B studies basic properties of the model,
such as steady-state behavior, spectral properties, and linear
instabilities, and verifies that they preserve the essential fea-
tures of more complex analyses, including the electrophysi-
ologically well-known EEG spectral peaks of the slow-wave
(=1 Hz), a (~10 Hz), and # (~4 Hz) bands. The stability
zone in parameter space is then discussed and compared with
previous model approaches, and we show that limit-cycle
solutions can exist under certain conditions. Furthermore, a
linearized model and a simplified nonlinear model are de-
rived from the compact model in the vicinity of steady states,
and their properties are investigated in Secs. III C and III D,
respectively. As an additional concrete illustration and veri-
fication of the model, seizure frequencies, onsets, and dy-
namics are examined in Sec. I'V. This work lays the founda-
tion for use of the model in analyzing other phenomena and
as a guide to analysis and investigation of more complicated
models, somewhat akin to the role of simplified single-
neuron models (e.g., leaky integrate and fire) in assisting
analysis of conductance-based (e.g., Hodgkin-Huxley) for-
mulations of neuronal dynamics.

II. CORTICOTHALAMIC MODEL

We consider a continuum brain model developed by Rob-
inson et al. [12,15,22], from which a more compact model is
derived in Sec. III. Since the details of the model can be
found in the literature, we restrict ourselves here to a brief
outline.

The first feature incorporated is the neural response to the
cell-body potential. Mean firing rates Q, of excitatory (a
=¢) and inhibitory (a=i) neurons are nonlinearly related to
mean potentials V,,, measured relative to the resting level, by
Q,(r,1)=8[V,(r,1)], where S is a sigmoidal function that in-
creases from 0 to Q.. as V, increases from —% to +%. We
use

Q max

~(V,~0)lo"’

0,=5(Vy) = (1)

l+e

where 6 is the mean firing threshold and o’ 7/ V3 is its stan-
dard deviation.

The potential V, results after dendritic inputs have been
filtered and smeared out in time while passing through the
synapses and dendritic tree, then summed. It approximately
obeys the differential equation [12,18]

Daﬁve(r’t) = ae¢e(r’t) + V¢¢i¢i(rst) + Vas¢s(r’t - t0/2) >
(2)

1 d (1 1\d
Dyg=|—"—5+|—+= |- +1], (3)

aBdt a B)dt
where « and B are the mean decay and rise rates, respec-
tively, of the cell-body potential produced by an impulse at
dendritic synapses and 8= 4«. The right-hand side of Eq. (2)

involves contributions from ¢, ;, from other cortical neurons,
and inputs ¢, from thalamic relay nuclei, delayed by a time
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FIG. 1. Schematic of corticothalamic interactions, showing lo-
cations ab at which v, and G, act.

to/2 required for signals to propagate from thalamus to cor-
tex. In Eq. (2), v,,=N 5. Where N, is the mean number of
synapses from neurons of type b=e,i,s to type a=e,i and
s.p 18 the strength of the response to a unit signal from neu-
rons of type b.

Each part of the corticothalamic system produces a field
¢, of pulses that travels at a velocity v, (e.g., for excitatory
neurons v,~ 10 ms~!) and obeys a damped wave equation
[11,12,18]

(%% ; %% il rgvz) bur.0) =SV, (0], (4)

where vy, is the mean decay rate and r, is the mean range of
axons a. If intracortical connectivities are proportional to the
numbers of synapses involved, V;=V, and Q,=0Q, [10,18],
which lets us concentrate on excitatory quantities. The small-
ness of r; also lets us set y;~o0 and r;=~0 [12].

The model incorporates corticothalamic connectivities
and thalamic nonlinearities. Figure 1 shows the connectivi-
ties considered, including the thalamic reticular nucleus that
inhibits relay nuclei. The latter relay external stimuli ¢, to
the cortex as well as corticothalamic feedback. The cell-body
potentials then satisfy

DaBVC(r’t) = Vce(be(rvt - t0/2) + Vcs¢s(rat) + Vcr¢r(r,t)
+ Vc'i1¢n(r’t)7 (5)

where there is a delay #,/2 for signals to travel from cortex to
thalamus or back, c¢=r,s,v,.=v,=0, and ¢.(r,1)
=S[V.(r,1)] [18] applies because the small size of the tha-
lamic nuclei enables us to assume y.~% and r.=0 for ¢
=r,s in Eq. (4).

This model has 15 parameters: Qp. 6, 0, @, B, 1y, Ve
Veis Vess Vses Vsrs Vansn’ Vies Vryss and ‘ye—enough to allow
realistic representation of the most salient anatomy and
physiology, but few enough to yield useful interpretations.
The parameters are approximately known from experiment
[17,18], leading to the nominal adult human values in Table
I, which are indicative only—some vary several fold be-
tween individuals, arousal states, and disorders—but are en-
tirely compatible with physiology.
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TABLE I. Physiologically plausible ranges and nominal values
of parameters of the previous corticothalamic model [17].

Parameter Range Nominal value Unit
Omax 100-1000 250 57!
0 ~15 15 mV
o’ ~3 33 mV
Ye 70-150 100 s7!
to 70-90 80 ms
Ve 0.05-10 1.2 mV s
—Vy; 0.05-10 1.8 mV s
Vg 0.05-10 1.2 mV s
Ve 0.05-10 1.2 mV s
-V, 0.05-10 0.8 mV s
Vye 0.05-10 0.4 mV s
Vys 0.05-10 0.2 mV s
Vi by 0.05-10 1.0 mV
a 25-100 50 s7!
Bla 2-6 4

III. COMPACT MODEL

In this section we derive a compact model based on the
above corticothalamic model, keeping essential features of
brain dynamics, such as rapid and delayed feedbacks, but
approximating dendritic responses and intrathalamic dynam-
ics. We then demonstrate, here and in Sec. IV, that many key
linear and nonlinear properties of the more complex model
are reproduced by the compact model in a reduced parameter
space. The approximations made thus do not invalidate the
compact model, and it is thus a useful tool, especially when
the brain shows low-dimensional dynamics.

A. Derivation of model equations

In order to derive a compact approximation, we assume
that o and S are large relative to d/dt so that we can write
D,g~=1 in Eq. (3). This nominally restricts analysis to angu-
lar frequencies w= «, B, corresponding to a frequencies of
=10 Hz. However, the analysis is expected to be semiquan-
titatively correct even somewhat above this point and it is a
matter for verification which dynamical features are, in fact,
preserved. We turn to the question of verification below.

Using the approximations V;=V, [10,18], y,~~, and r,
=0 (a=i,r,s) [12,18] from Sec. II, Egs. (2), (4), and (5)
yield a single nonlinear equation for V,(r,7):

Ve(l',t) - VeiS[Ve(rat)] - Veed)e(rat)

= V”S{ Vi D (1 = 1) + vy, D, (1,1 — 1/2)

+ Ver|: Vre¢e(r’t_ tO) + E{Ve(r’t) - VeiS[Ve(r’t)]

es

- Vee¢e(r’t)}:| } . (6)
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Solving this transcendental equation for S(V,), we obtain the
formal solution

S[Velr,0)]=f(.(x.1), ¢, (x.1 = 19), b, (r.1 = 1¢/2)) . (7)

in terms of a function f that only depends on ¢,(r,7),
&, (r,t—ty), and ¢, (r,t—1,/2). In Secs. I C and IIID we
find approximate explicit expressions to replace Egs. (6) and
(7).

Inserting Eq. (7) into Eq. (4), we obtain a single time-
delayed differential equation with one variable ¢,:

1 RReD 2 ag e
Ve of " v, o
== ¢e(rvt) +f(¢e(r7t)s ¢e(r?t_ tO)’ ¢n(r7t - t0/2))

(8)

Compared with the more complex corticothalamic model in
the previous section, this compact model requires only ¢, to
describe the brain activity, which implies that the brain dy-
namics can be studied in a reduced space under certain con-
ditions. In fact, ¢, is known to be the most relevant variable
to EEG’s [9,12] and functional magnetic resonance imaging
[24]. We note that the right-hand side of Eq. (8) depends on
only three quantities with clear physiological meanings:
¢,(r,t) represents activities due to nearby neurons, ¢,(r,¢
—1) denotes delayed feedbacks via extracorticocortical loop,
and the external stimulus is ¢,(r,t—1,/2). Here the delay
time of the external stimulus is #,/2 since the stimulus is
relayed to cortex via a half pathway.

V2, (x,1)

B. Steady states and stability

Since low-dimensional highly synchronized solutions are
of most interest here, we assume for the moment that the
system is spatially homogenous so that the solution is inde-
pendent of spatial coordinates. That is, the Laplacian term in
Eq. (8) is set to zero. We now decompose the second-order
equation (8) into two first-order equations, introduce v
=(¢,,d¢,/d7)"=(v,,v,)7, and rescale time by the decay
rate, giving a new time variable 7= v,¢. Then, combined with
Eq. (7), the model equation (8) becomes

d—v—( " ) ©)
dt _vl+f(vl’él’(2)n)_202 ’

where 51(T)=v1(7'—7'0) and ¢,(7)=,(7—7/2). Then, the
steady states of the compact model can be obtained by set-
ting dv/dt to zero in Eq. (9). Since 7,=0, Y=v=v" in a
steady state, we obtain a steady state V*Z(UT,O) where UT
satisfies v,=f(v},v],$,). For example, Fig. 2 shows the
fixed points obtained numerically from Eq. (6) as functions
of the parameter v,, in a physiologically plausible range.
Depending on the parameter value, the model has one (v,
=<0.9 or v, =4.6) or three fixed points (0.9 <, <4.6). The
trajectories of the fixed points (see L;-L; in Fig. 2) indicate
that there exists a stable zone. Note that we obtain similar
results with other parameters (e.g., v,,). We set all time de-
rivatives to zero in Eq. (6) to derive steady states. This is the
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FIG. 2. Fixed points and their stability: (a) ¢2 vs v, and (b)
fixed points L;—L3 in a parameter space where stable fixed points
(solid curves L; and L;) are confined within a stable zone (sur-
rounded by thick solid lines) and unstable fixed points (dotted
curves L,) are located outside the zone. Note that the two parts of
curve L, in (b) join at large ¢, (not shown), making it a solid curve.
The multiple fixed points merge smoothly at the critical values
v,,~0.9,4.6. The apparent sharp corner at upper left in (a) proves
to be smooth at higher resolution.

same as setting d/dt=0 and d/dr=0 in Eqgs. (3) and (4), as
done in the previous model [22] to derive steady states.
Hence, the compact model has the same steady states as the
more general model.

When we linearize Eq. (9) about the steady states, we
need to consider two terms separately: v(7) a term without
the delay and v(7—7y) with the delay. Considering a small
deviation from the steady state V=v—v", where v" is the
steady state, Eq. (9) becomes

dv 0 1\ 0 0)\_
E’=(cl _2>V(7')+(C2 O)V(T—TO), (10)

where ¢,= —1+3f/dv,|y=y* and c,= 9f/ 30 |,y which are
dimensionless coefficients. We now seek solutions of the
form V(7)=v,e". Substituting this into Eq. (10), we obtain

0 1
)\ = =D . 11
Vo (Cl T epe™M _2)"0 Jvo (11)

Nontrivial solutions vy#0 of Eq. (11) exist when det(DJ
—\I)=0 and can thus be obtained by solving the character-
istic equation

N +2N =) =ce M0, (12)

The stability of the nontrivial solutions is determined by
the real parts of the solutions of Eq. (12). For example, if
there is no time delay (7y=0), the solutions are M\,
=—1% v’m, where c=c|+c,. Therefore, the steady state is
unstable if ¢>0. Thus, ¢;+c,=0 is an instability boundary
for the slow wave (~0 Hz). In addition, for 7,>0, there
exists another condition for Eq. (12) to have a solution with
zero real part. At this point the steady state becomes a limit
cycle, which implies that a Hopf birfucation may occur at the
instability boundary. Substituting A=iw into Eq. (12), we
obtain

—w’—c¢;=c, cos(wmy), (13)
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FIG. 3. Stability zone (inside the “wedge”) in the c,-c, param-
eter space for given 7. The slow-wave boundary (thick solid line)
is independent of 7,, while boundaries corresponding to the fre-
quencies of the a (~10 Hz) and 6 (~3 Hz) instabilities are partly
determined by 7,: thin solid line (7y=8), dashed line (7y=4), and
dotted line (7p=2). Note that ¢, are rescaled by 7 [i.e., c,,
=TyC1, so that the @ and slow-wave boundaries have the fixed ver-
tex at (c,,c,)=(2,-2)].

2w =-c, sin(wm). (14)

Thus, when w>0, the instability boundaries can be obtained
as parametric curves of w in ¢;—c, space for given 7,. De-
fining ¢, ,=c; ,7) and ¢=wm, Egs. (13) and (14) become

¢, = 2ltan o — Y7, (15)

¢y == 24isin . (16)

Note that ¢,— 2 and cy— -2 as ¢y— 0, which is the vertex of
the stable zone in Fig. 3. Now the instability boundaries are
parametrically determined by . When =< mr, the instability
boundary lies at ¢, <0, whereas ¢,>0 for m<¢)<2m as
shown in Fig. 3.

This stability zone of the compact model is very similar to
the three-dimensional “tent-shaped” stability zone of the pre-
vious model [17], but reduced to two gain-related dimen-
sions. In the previous work stability boundaries were param-
etrized in a reduced space with cortical (x), corticothalamic
(v), and thalamic (z) coordinates. As we show in the follow-
ing section, the parameters c, and c, of the compact model
can be obtained from the previous model and correspond to
v to(x—1) and 7,1y, respectively. However, there is no cor-
respondence to the thalamic stability parameter z, since in-
trathalamic feedbacks are not considered in the compact
model (z=0). The previous x, y, and z coordinates were
bounded (e.g., 0<x=<ux,~ 1.2, which corresponds to —8
<c¢,=<2 for the parameters in Table I), based on physiologi-
cal observations, but we allow ¢, and ¢, to vary more widely
to explore the model’s properties more extensively here. As
an interesting result of this exploration, we find the « insta-
bility boundaries in the zone with ¢,=8 and ¢,=<-38, which
were previously reported on only the z>0 surface of the
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“tent” diagram [17] for ¢, restricted to ¢,=-8 (x=0). How-
ever, the « instability of the previous model is also found to
meet the slow-wave instability at z=0 when x<<0. This
shows that the topological structure of the stable zone is
qualitatively similar to the structure of “tent” zone, but quan-
titatively slightly different. We also note that the delay time
7 1s also a key parameter that affects the stability, as shown
in Fig. 3.

C. Simplified linear model and linear spectra

In order to study linear dynamics near steady states and
verify they reproduce those of previous models, we linearize
Eq. (8) in the vicinity of a steady state, which gives (see
Appendix A for details)

Px.(R,7) 5 Xe(R.7)
P or

=+ ClXe(R7 T) + CZXe(R’ T 7-0) + C3Xn(R’ T— 7-0/2) >
(17)

where 7=y, is the dimensionless time unit, x,= ¢,/ Qpax 15 2
dimensionless field, and R=r/r, is a dimensionless spatial
vector so that Vx=r2V? is a dimensionless Laplacian. The
coefficients are explicitly determined [see Eq. (A10)—(A12)]
using nominal parameter values of the previous corticotha-
lamic model [17] (see Table 1) and numerically obtained
steady-state values (see Fig. 2), which are ¢;~-0.49, c,
~0.27, and ¢;~0.09.

The physiological meanings of each term in the linearized
compact model equation (17) can be clearly understood. The
first term represents rapid corticocortical feedbacks, while
the second term represents feedback via extracortical path-
ways delayed by a time 7,. We therefore argue that c¢; pa-
rametrizes the strength of corticocortical activities, ¢, param-
etrizes corticothalamic feedbacks, and c; parametrizes a
delayed external stimulus that can be considered as random
noise in many cases; we set the last term of Eq. (17) to be

~ Vax.(R,7)

10

100

small-amplitude uniformly distributed random noise for the
rest of this paper in numerical simulations.

Spectra of the linearized compact model can be easily
obtained by converting the model equation (17) into the fre-
quency domain using a Fourier transformation. The transfer
function, which gives the cortical excitatory response per
unit external stimulus, is then

K, iwTy/2

Xe( w) — C23€ 3 , (18)
(K 0) K +q°(0)

g’ (@)= (1 —iw)® = (c;+1) = ce'™, (19)

where K is the dimensionless wave vector corresponding to
R. In the case of a random external stimulus, )(n(K,w)| s a
constant and P(K, w) ~ |x,(K, w)|>. The power spectrum can
be written as

dK
Pw)~ | — 5. 20
0~ | 20
which is analytically integrable [12,17], giving
1
’[Re
Py ~1 1R (1)
Argq
Im ¢°

for one- and two-dimensional systems, respectively, where
Arg denotes the complex argument and Re and Im denote the
real and imaginary parts, respectively. This result reproduces
previous work [17,18] in the limit «, 83— . If we consider a
spatially homogeneous system, the power spectrum satisfies
P(w)~1/|¢*(w)|*~ o™ (w>1), which is shown in Fig. 4 in
comparison with the numerically obtained power spectrum
of the linearized model.
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D. Simplified nonlinear model

Given the compact model (8), the linearized equation (17)
is a good tool to study some properties, but its solutions are
well defined in the stable region only and diverge in the
unstable region. In addition, nonlinear properties (e.g., limit
cycles and bifurcations) are observed. To treat these phenom-
ena we retain the next-order nonlinear terms beyond the lin-
earized approximation. Iteratively expanding Eq. (7) up to
cubic terms, Eq. (8) yields the explicit form [which also
avoids the difficulties of the transcendental equation (6)]

xR, 7) _Ix.(R,7)
+2
I ar
= +hx, R, 7+ hox, R, 7= 79) + €2X§(R, 7)
+ &)X, (R, D) + Iy, (R, 7— 7/2), (22)

- V%{Xe(R, T)

where the coefficients /; and ¢; can be related to physiology
via the previous corticothalamic model [17], as discussed in
Appendix B. Since the X? term alone would make solutions
of Eq. (22) diverge, we also retain the higher-order cubic
term, which has a negative coefficient (€3 <0 since v,;<0),
so the solutions are bounded. For detailed derivations and an
alternative nonlinear approximation, see Appendix B. Note
that the right-hand side of Eq. (22) depends only on the
intracortical activity (first, third, and fourth terms), the de-
layed corticothalamic feedback (second term), and the de-
layed external input (last term), as implied by Eq. (7).

Following the stability analysis in Sec. III B, we rewrite
Eq. (22) as

wa
W= ) 3 2 . s (23)
h1W1 + Wy + €Wy + h2W1 + h3Xn - 2W2

where w=(x,,dx,/dD =(w,,w)T, W (D=w,(7—7), and
Xa(T)=x,(7—7/2). The mean of the external stimulus has
been incorporated in determining the fixed points, so {(x,)
=0. Assuming Y, to be random white noise and setting the
left-hand side of Eq. (23) to zero, the fixed points occur
where w,=0 and

hw| + &(w))* + &(w))> =0, (24)

where h=h;+h,. The model has one fixed point at wg
=(0,0) when h<-&/4|e;], while it has multiple fixed points
at wy=(0,0) and w,=(w,,0)=((~&,=\e—4hes)/2¢€5,0)
when h=-€3/4|e;|. (For simplicity of analysis we set €,
>0 without loss of generality.) These fixed points are drawn
in Fig. 5(a) as functions of h, where solid curves denote
stable fixed points and dotted curves denote unstable ones.

The stability of the fixed points is determined by the
modified characteristic equation

A2+ 2N —hy = 26w, — 3e(w))? = hye ™™ (25)

at the fixed points. When 7=0, the stability of the fixed
points can be evaluated from the eigenvalues of Eq. (25),
setting 7y=0. The eigenvalues are as follows: (i) At w,,
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(a)

b 0

FIG. 5. Schematic of bifurcation: (a) Stable fixed points (solid
lines) and unstable fixed points (dotted lines) are calculated with
respect to h. (b) Locations of & values in h;-h, parameter space,
where hg, h,, h;, and hy=0 are instability boundaries of 6, «, and
slow wave, respectively; hbz—eg/4\e3| is the critical & (saddle
node) where nontrivial fixed points emerge. Double-pointed arrows
denote typical pathways when the system crosses the instability
boundaries. For example, the bottom right double-pointed arrow
indicates a case when the system crosses the 6 instability boundary,
the saddle-node critical point, and the slow-wave instability.

No=—1+\1+h (26)

Thus the fixed point is stable (unstable) when 7<0 (h>0)
as seen in Fig. 5(a), where wy is drawn as a solid line (stable)
for h<0 and dotted line (unstable) for 2>0. (ii) At Wi,

No=— 1+ V1 +(E—dhe; T eV & —dhe)2e;. (27)

Thus w, is stable when 42>0 [see the two solid curves in
Fig. 5(a) for 1>0], while w" (Wj_) is stable (unstable) when
—e§/4|e3|<h<0 [solid and dotted curves, respectively, in
Fig. 5(a) for h<0].

When 7# 0, nontrivial oscillating solutions near the fixed
points can exist. Since we consider small perturbations from
the linearized model, Eq. (25) has similar solutions to Eq.
(12). Thus, the instability boundaries for limit-cycle solu-
tions are given by Egs. (15) and (16) upon replacing ¢, , with
hy, (e, ¢;—h+2&w +3&w] and ¢, — hy).

IV. DYNAMICS OF EPILEPTIC SEIZURES

We now consider the dynamics of epileptic seizures to
further illustrate the application of our model, verify that it
reproduces the nonlinear dynamical properties of more com-
plex formulations, and show how it yields additional in-
sights. Stable limit-cycle signals are commonly observed in
many EEG recordings during epileptic seizures [3]. In par-
ticular, the generalized absence (petit mal) epilepsy shows
limit-cycle behavior at around 3 Hz for 10-20 s. Although
the dynamical origin of seizures is not fully understood, re-
cent work has suggested that bifurcations of steady states
under certain conditions may lead to seizure activity [17,20].
We thus examine possible bifurcations and illustrate result-
ing epileptic seizures using our simplified nonlinear model
(22). The limit-cycle periods are also estimated analytically
in Sec. IV B.
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FIG. 6. Bifurcations of steady states when they cross the insta-
bility boundaries: (a) the 6, (b) the «, and (c) the slow-wave insta-
bility boundary. The system initially stays inside the stability zone
and becomes unstable after it crosses an instability boundary at ¢
=5.

A. Limit cycles and hysteresis

In previous literature, the dynamical origin of seizures
was related to the stability diagram [17] analogous to Fig. 3,
and some explorations of EEG’s during seizures have also
been reported [20]. Similarly, our model shows limit-cycle
solutions when the system crosses either the 6 or « instabil-
ity boundaries, which is consistent with seizure activity be-
ing related to sudden changes of the stability of a brain.
These limit cycles are caused by varying model parameters
that represent underlying physiology. Although it is of inter-
est to study which physiological mechanisms precipitate the
instability and how the model parameters are affected by
them, this is beyond the scope of the present work.

We follow the earlier arguments in [17,20], which show
that epileptic seizures are caused by bifurcations of steady
states of a system when it crosses the instability boundaries.
As shown in Fig. 6, we observe three different cases: (i)
transition to another fixed point when the system crosses the
slow-wave instability boundary, (ii) a limit cycle around
3 Hz when it crosses the 6 instability boundary, and (iii) a
limit cycle around 10 Hz when it crosses the « instability
boundary. The periods of the limit cycles (ii) and (iii) are
analytically estimated in Sec. IV B.

Figure 7 illustrates hysteresis at onset of seizure activity,
which occurs when a system crosses limit-cycle instability
boundary [e.g., see the double arrow in Fig. 5(b)]. When #,
and h, are very close, the system can have multiple attractors
near the instability region and the numerical solutions are
determined by initial conditions. The system has a single
fixed point at zero perturbation below the boundaries, but it
has a limit-cycle attractor above hg Thus, the system has
different initial conditions when it crosses the instability re-
gion, depending on the direction, and, as a result, has differ-
ent numerical solutions as seen in Fig. 7. However, when
h,> hgy the system has only a single attractor in each region:
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(©

Xe

FIG. 7. Hysteresis at the 6 instability boundary. (a) and (c) show
time series of Eq. (22), which are small deviations y, from steady
states of ¢,, while (b) shows how a parameter & is varying during
the numerical integrations. The different time series in the region II
indicate a hysteresis in the parameter regime h,<<h<<h,. Note that
the time axis in (c) is reversed. For definitions of A, &, and h, refer
to Fig. 5.

a fixed point (h<<h,) and a limit cycle (2> hy), respectively.
The system thus cannot show any hysteresis.

B. Estimates of limit-cycle periods during seizures

The limit-cycle period during seizures can be easily esti-
mated using the compact model with the phase ¢y=wm,
=2mty/T in Eq. (16), which is evaluated as a function of ¢,
in the following paragraphs.

(i) At the vertex of the stability zone (0<i,<<1), we
obtain ¢, ~ \-3(2+c,) (for ¢,=-2) from Eq. (16):

2’7Tt0 27Tt0
v= =7 .
lﬂu N— 3(2 + Cy)
Thus T,,— as ¢,— -2, which implies a transition to an-
other fixed point near the vertex.

(ii) The 6 instability occurs when 0 < <. We thus set
hg=m/2+ 5, then obtain ¢, ~-2¢,~ - from Eq. (16) and

(28)

T0= 27Tt0/lr//g = - 47Tt0/cy ~ 4t0 (29)

In particular, when 7,=80 ms, the resonance period of the 6
instability is 7y~ 320 ms, which matches well with experi-
mentally reported values of 200—400 ms [3]. According to
previous theoretical work, the period of the absence (petit
mal) instability was estimated to be Ty=~2fy+6/a+6/f
+4/7, [17]. For the nominal values in Table I, the period is
roughly T4~ 350 ms, which is also compatible with our re-
sult. In this parameter regime, 1/2a~2/8~1/vy,~0.1t, for
the nominal values. Thus the period is approximately 3.9¢,
which is roughly equal to our result 4.0¢,. The coefficient of
1o was 2 in the previous estimate, but when £, is sufficiently
large, the 6 instability occurs at ¢,<-2 and ¢,~ m, giving
Ty~ 2tyl gy~ 2t,, which is the same as the previous esti-
mate in the relevant limit «, 3, y,— .
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(iii) The « instability occurs when 7<<<<27r. We define
" to be the angle where ¢, in Eq. (16) has a minimum ("

~4.50~1.437) and = +6=3mw/2+6 (6==5-0.07m).
From Eq. (16), sin ¢f,~-cos 6~-1+8&/2 and t,~c,(1
-8/2)/2, so

To= 2t/ = dityflc,(1 = 6%/2)] = 410wt /c,. (30)

Since ¢, ~ 24"/ (1~ &*/2)~2.93 at the « instability bound-
ary, T,~1.40t,~ 110 ms when 7,=80 ms, which matches
well with the period of tonic-clonic (grand mal) seizures [3]
and previous theoretical work where the period of a rhythm
was estimated to be T,~ty+1/a+1/B [15]. With nominal
values (see Table I), 1/4a~1/B8~0.05f, and T,~ 1.25¢,,
which is close to our result. Similarly, when ¢, is sufficiently
large, the « instability occurs at cy>=2 and ¢, ~ 27, and we
obtain T,~2ty/ ¢,~ 1y, which is the same as the previous
estimate in the relevant limit a, 8— .

V. SUMMARY AND DISCUSSION

The chief result of this work is that we have developed a
compact model which is derived from a physiologically
based mean-field model of corticothalamic dynamics by ap-
proximating the dendritic responses and intrathalamic feed-
backs. This model describes brain dynamics using a single
second-order delay differential equation to replace a set of
four such equations in the original formulation, but still in-
volves solution of a transcendental equation. Later in the
paper explicit linear and approximate nonlinear forms are
derived that enable the dynamics to be investigated in the
neighborhood of fixed points. The simplified model can be
expressed via just three physiologically intuitive feedback
terms, covering corticocortical connections, delayed feed-
backs via extracortical paths, and the delay inherent in the
latter loop. It involves only one explicit activity variable and
can thus be straightforwardly used to follow activity in a
reduced parameter space.

We verified that the compact model successfully repro-
duces key linear and nonlinear properties of brain dynamics
from both experiments and models, notwithstanding the ap-
proximations made. In particular, the spectral peaks of
EEG?’s, such as those of slow-wave, 6 and « peaks, are ob-
served for physiologically plausible parameters. The sensi-
tivity of these frequencies to the model parameters is ex-
plored and explained. As a result, we found a stability zone
in our model parameter space and compared it with previous
work [17,20]. As a system crosses the stability boundaries,
limit cycles occur, which may lead to seizure activity. In
addition, the limit-cycle periods during seizures were ana-
lytically estimated and shown to be consistent with physi-
ologically observed values and previous work. The estimated
period at the 6 instability (~300 ms) corresponds well to the
period of absence (petit mal) seizures (200—400 ms). Limit
cycles with a period of ~100 ms are also predicted beyond
the « instability boundary, consistent with the period of
tonic-clonic (grand mal) seizures [3].

Although some previous continuum models (e.g., Ref.
[17]) describe brain activity in more physiological detail,
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they involve several variables and ten or more parameters.
As a result, it is very hard to investigate the properties of
these models systematically (numerical approaches are pos-
sible but are still seriously hampered by the high dimension-
ality of parameter space). Using our compact formulation,
many key properties of the brain can be described in a sim-
plified way with fewer parameters, especially when it exhib-
its low-dimensional dynamics. With the help of this compact
formulation, we can thus analyze the basic brain dynamics
more systematically, which will provide useful guidance for
investigation of more complex models and neuroscience ap-
plications, just as simplified neuronal models serve to guide
more complex and accurate conductance-based ones at the
microscopic level.
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APPENDIX A: LINEAR COMPACT MODEL

In this appendix we derive the linearized model from the
compact model (8). Assuming that the system is spatially
homogenous and D ;= 1, we obtain the following three non-
linear equations from Egs. (2) and (5):

Ve(t) = ee¢e(t) + VeiS[Ve(t)] + VesS[Vs(t_ t0/2)]’ (Al)

Vi) = v et = 19/2) + v, S[V(0)], (A2)

Vi(t) = v ot = 19/2) + v SV (D] + v,,(1) . (A3)

Since dynamical behaviors near steady states are of most

interest, we let Q,=S(V,), ¢,=Q,~Q., and ¢,=d,~¢.,
where Q" =S(V.) and ¢, are the steady-state values, and sim-

plify the inverse sigmoidal function on the left-hand side of
Egs. (A1)—(A3) using

!

Ti-0/00) —Z*/Q )qa+0(61§).

V=510, =50, +
(A4)

We thus obtain
G(0) = e Bet) + gV (0) + presq (1 = 15/2),  (AS)

G0 = prre @t = 16/2) + g M (0), (A6)
g(0) = sy belt = 16/2) + iy (1) + pn (1), (A7)

where 1,,=(v,,/ ") Q,(1-0,/Qmnax)] and q(al) denotes the
approximated value of ¢, considering linear terms only.
Eliminating qﬁl) and q(rl) from Egs. (A5)—(A7), we obtain

— + Mgy —
qil)(t) — Mee ¢e(t) + :U“es(lu“xe Mogr/L e) ¢g(t _ t())
1- Mei (1 - /‘Lei)(]‘ - MSFILLI‘S)
MesMsn (_ﬁn(t _ t0/2) ) (A8)

(1 - Iu’ei)(l - /'Lsrlu’rs)
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Substituting Eq. (A8) into the right-hand side of Eq. (8),
we finally obtain the linearized equation

xR, 1) Ix(R,7)
+2
a7 ar
= CIXE(R’ T) + CZXE,(R’ T— TO) + cSXn(R» T—= 70/2)’
(A9)

- Vax.(R,7)

where 7=17,t is a dimensionless time, y,= @,/ Oy is a di-
mensionless field, R=r/r, is a dimensionless space vector so
that VR =r>V?, and the coefficients are

/‘Lee

i =—1+ , (A10)
1- Mei
oo s Mse + Msrfhre) (AL1)
2= s
(1 - IU/el)(l - /'l’srlu'rs)
3= Mestsn (A12)

(1 - Iu‘ei)(l - Msr/u‘rs) .
APPENDIX B: NONLINEAR MODEL WITH A CUBIC
TERM

Expanding the left-hand side of Eq. (Al) up to cubic
terms, Eq. (A5) becomes

Ge(0) + 022 (D) + 1302 (D) = oo Be(t) + i (1)
+ /*Lesqs(t - tO/Z), (B 1)

where the coefficients are

ZQZ - Qmax
e = * N B2
27 01O~ 01 (52
2[3 )2 - 3 . max rznax ’
o Q300w+ G

Q:(Qmax - Q:)

Although we have formal solutions of Eq. (B1) for ¢, replac-
ing g, on the right-hand side with the linearized solution qil)
obtained from Egs. (A5)-(A7), the solutions are generally

too complex to be analytically useful. If y,>1/t,, g, ~ ¢, at
a steady state [see Eq. (4)]. We thus further approximate Eq.
(B1) by simply replacing all the g, on the left-hand side with

&,. Then Eq. (8) becomes

Px.(R,7) 5 Xe(R.7)
PR ar

=+ the(R’T) + hZXe(R’ T— 7'0) + sz?(R, 7)
+ &X,(R, ) + hyx, (R, 7= 7/2), (B4)

~ Vax.(R,7)

where the coefficients are
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1-
hy=— 14—t (B5)
Mei
hz - - lu‘es(lu‘se + lusrlu‘re) (B6)
Mei(l - MSVIu’rS) |
— MesMsn
=, (B7)
’ Mei(l - /'l’srlu'rs)
€= 7762//1’€i’ (BS)
€3= o3/ Mei- (B9)

An alternative form of nonlinear correction can be also
derived as follows. From Egs. (A6) and (A7) we obtain the
linearized solution of ¢,:

- /’LS€+ ILLSr/'LrE

qfv])(t) - ¢e(t - t0/2) + 1—Y¢n(t - t0/2) .

l_lusr rs = MsrMrs

(B10)

Replacing 7 in Eq. (B10) with 1—#,/2 and using Eq. (AS8),
V,(¢) in Eq. (A1) can be approximated as an explicit function
of ¢,(1), ¢ (t—1y), and ¢,(r—1y/2). Thus,

V(1) = dy + d x, (1) + dox,(t = tg) + dsx,,(t = 1)/2),

(B11)
where the coefficients are
dy=S"(,). (B12)
dl - Qmaxvee , (B13)
1- Moei

max”es se + Sri-vre.
dzzQaV(/-l’ MM)’ (B14)

(1= ) (1 = pgepty)
d3 — Qmax VL’SMS” (B 15)

(1 - Iu‘ei)(l - :U*srlurs) .
Substituting Eq. (B11) into Egs. (7) and (8), the model equa-
tion becomes
PxR,7) xR, 7)
+2 -
ar ar

Vax.(R,7)

=_Xe(R» T) + S[d0+d1Xe(R7 T)

max

+drx,(R,7— 7)) + d3x,(R, 7— 175/2)]. (B16)

Here the right-hand side includes a sigmoidal function,
which is a widely used form in neuroscience.
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